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Institute for Mathematical Science /数理科学研究
所

Starts from April 2018

13 members belong

One of the seven priority research areas of Waseda Research
Institute for Science and Engineering /理工学術院総合研究所
Consists of three groups:
- Nonlinear Analysis Research Group (Nonlinear Partial Differential Equa-

tions, Fluid Mathematics, Fluid Engineering, Nonlinear Dynamical Systems)

- Computational Mathematics Research Group (Development of innovative
numerical methods, simulation techniques, and algorithms for elucidating
complex phenomena)

- Statistical Mathematics Research Group (Mathematical Theory of Data Sci-
ence, Mathematics of Large Data, Mathematics of Modeling, Financial and
Social Mathematics, Mathematics of Network Data, Arithmetic Statistics)
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Keywords

Verified numerical computation /精度保証付き数値計算

Numerical verification method /数値的検証法

Computer-assisted proofs (analysis) /計算機援用証明（解析）

Reliable computing

Rigorous numerics

Validated numerics

Self-validating numerical methods

Self-validated numerical methods
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Verified numerical computation

Numerical methods strictly estimating errors therein, e.g., rounding
errors, truncation errors, and discretization errors.

Mathematical reliability is added to computation results.

It can be applied to computer-assisted proofs.

Interval arithmetic plays an important role for implementing verified
numerical computations.

Kazuaki Tanaka 5 / 80



V.N.C. for PDEs and appl. to sign-change struc. anal. | Interval arithmetic

Interval arithmetic
History:

The origin of interval arithmetic is the seminal master thesis by Teruo
Sunaga (須永照夫), handwritten in Japanese, submitted on February
29, 1956.

R. E. Moore wrote a book concerning interval arithmetic in 1966.

S. M. Rump and S. Oishi extended it to fast arithmetics for vectors
and matrices around 2000.

Example of implementation:

Let F be the set of floating point numbers.

For a = [a, a] and b = [b, b] (a, a, b, b ∈ F), we calculate

a + b = [▽(a + b),△(a + b)],

where ▽(△) stands for round down (up).
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Do computational errors cause fatal result?
W. M. Kahan,1989� �
Significant discrepancies (between the computed and the true result)
are very rare, too rare to worry about all the time, yet not rare enough
to ignore.
ちょっと意訳：数値計算結果と正しい結果の間に著しい食い違いがある
ことは極めて稀である。極めて稀であるため、常に心配する必要はな
い。ただ、無視できるほどに稀というわけでもない。� �

(from Wikipedia)

Kazuaki Tanaka 7 / 80



V.N.C. for PDEs and appl. to sign-change struc. anal. | Rump’s example

Rump’s example

Rump [1] found the following example:

f (x, y) = (333.75 − a2)b6 + a2(11a2b2 − 121b4 − 2) + 5.5b8 +
a
2b
.

For example, when a = 77617 and b = 33096 (what’s happen with
computers?).
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Spurious solution of Emden’s equation
Breuer-Plum-McKenna observed a spurious solution of Emden’s equa-
tion −∆u = u2 due to discretization errors [2].
The existence of asymmetric solutions has been denied by Gidas-Ni-
Nirenberg’s theory.

[2] B. Breuer, M. Plum, and P. McKenna, “Inclusions and existence proofs for solutions of a nonlinear boundary
value problem by spectral numerical methods,” in Topics in Numerical Analysis, pp. 61–77, Springer, 2001
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Patriot Missile Failure

An American Patriot Missile failed to track and intercept an incoming
Iraqi Scud missile.

- Date: February 25, 1991, during the Gulf War

- Location: Dhahran, Saudi Arabia

- Number of deaths: 28

- Number of injuries: 100

Quoted from:
http://www.sydrose.com/case100/298/

http://www-users.math.umn.edu/˜arnold//disasters/patriot.html
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Books

[3] S. Oishi and etc, Foundation of Verified Numerical Computations (in Japanese). Corona Publishing Co., Ltd.,
2018

[4] M. T. Nakao, M. Plum, and Y. Watanabe, Numerical Verification Methods and Computer-Assisted Proofs for

Partial Differential Equations. Springer Series in Computational Mathematics, 2019
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Libraries

Intlab: a MATLAB/Octave toolbox for verified numerical computation
by S.M. Rump.
http://www.ti3.tu-harburg.de/rump/intlab/

kv library: a library written in C++ developed by M. Kashiwagi.
http://verifiedby.me/kv/

VCP library: a library for “Verified Computation for PDEs” by
K. Sekine. This has been developed on the basis of kv library.
https://verified.computation.jp/
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Interest: Computer-assisted proofs

Four color theorem, 1976

Double bubble conjecture, 1995

Kepler conjecture, 1998

Lorenz attractor, 2002
*14th of Smale’s problems proved by Warwick Tucker
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Computer-assisted proofs for PDEs with verified
numerical computation

The breakthrough is goes back to the works around 1990 [5, 6].
Recent methods are mainly based on

- Newton-Kantorovich’s theorem or its improvement

- Direct application of several fixed point theorems (e.g., Banach’s or
Schauder’s)

- Semigroup theories for parabolic equations

- Sub- and super-solution methods

Recent developments are found in, e.g., [3, 4].

[3] S. Oishi and etc, Foundation of Verified Numerical Computations (in Japanese). Corona Publishing Co., Ltd.,
2018

[4] M. T. Nakao, M. Plum, and Y. Watanabe, Numerical Verification Methods and Computer-Assisted Proofs for

Partial Differential Equations. Springer Series in Computational Mathematics, 2019
[5] M. T. Nakao, “A numerical approach to the proof of existence of solutions for elliptic problems,” Japan Journal

of Applied Mathematics, vol. 5, no. 2, pp. 313–332, 1988
[6] M. Plum, “Computer-assisted existence proofs for two-point boundary value problems,” Computing, vol. 46,

no. 1, pp. 19–34, 1991
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What is proved?

If a certain “good” approximate solution û is obtained, the existence of
an exact solution u is proved as in the form of the inequality:

That is, we prove the existence of solutions with quantitative infor-
mation; moreover, under suitable conditions, multiplicity, local unique-
ness, and nondegeneracy are proved together.

But, only from the inequality, we cannot obtain qualitative information
other than them, such that sign (positivity and negativity), the number
of sign-changes, convexity, etc.
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Scope: Nodal domain (sign change)

Definition 1

For a function u : Ω→ R, the connected components of the open sets

{x ∈ Ω : u(x) > 0} and {x ∈ Ω : u(x) < 0}

are called the nodal domains of u. The zero level-set {x ∈ Ω : u(x) = 0}
is called the nodal line of u.

#N.D.(u): the nodal number of the nodal domains of u

Question: #N.D.(u) = #N.D.(û)?

Answer: No! (generally)
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Upper bound
Approximation 
Lower bound
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It seems and I hope that #N.D.(u) = 4...
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Conceptional figure for the area where (û − σ)(û + σ) < 0 between the two
solid lines.
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Purpose

Let Ω ⊂ Rn (n = 1, 2, 3) be a bounded domain.

Our objective is the semilinear elliptic problem{
−∆u(x) = f (u(x)) x ∈ Ω,
B.C.

The purpose is to

Rigorously estimate #N.D.(u)
as well as to reveal the topological information of the nodal lines, the
zero level sets of u, (how they intersect).
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Contents
1 Verification methods for Elliptic problems

Weak form
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Important lemma
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Application

3 Sing-change structure
Required verification results
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4 Extension to other boundary conditions
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Dirichlet problem

In this section, we discuss verification method for the homogeneous
Dirichlet problem: {

−∆u(x) = f (u(x)), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω, (D)

where f is a C1 function satisfying

| f (t)| ≤ a0|t|p + b0 for all t ∈ R,
| f ′(t)| ≤ a1|t|p−1 + b1 for all t ∈ R

for some a0, a1, b0, b1 ≥ 0 and p < p∗.
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Notation

Lp (Ω) (1 ≤ p < ∞): the functional space of p-th power Lebesgue
integrable functions over Ω.

L∞ (Ω): the functional space of Lebesgue measurable functions over
Ω, with the norm ∥u∥L∞(Ω) := ess sup{|u (x)| | x ∈ Ω} for u ∈ L∞ (Ω).

Hk (Ω): the kth order L2 Sobolev space on Ω.

H1
0 (Ω) :=

{
u ∈ H1 (Ω) : u = 0 on ∂Ω in the trace sense

}
, i.e., the clo-

sure of C∞0 (Ω) in H1(Ω).

We denote V = H1
0(Ω) and V∗ =(the dual space of V).

The norm bound for the embedding V ↪→ Lp+1 (Ω) is denoted by
Cp+1(= Cp+1(Ω)), that is, Cp+1 is a positive number that satisfies

∥u∥Lp+1(Ω) ≤ Cp+1 ∥u∥V for all u ∈ V,

where p ∈ [1,∞) when N = 1, 2 and p ∈ [1, p∗] when N ≥ 3.
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Weak form
We define the operator F by

F :
{

u(·) 7→ f (u(·)),
V → V∗.

Moreover, we define another operator F : V → V∗ by F (u) := −∆u − F(u),
which is characterized by

⟨F (u), v⟩ = (∇u,∇v)L2 − ⟨F(u), v⟩ for all u, v ∈ V,

where ⟨F(u), v⟩ =
∫
Ω

f (u(x))v(x)dx. Under these notation and assumptions,
we look for solutions u ∈ V of

F (u) = 0, (P)

which corresponds to the weak form of (D). We call this D-problem prevent-
ing confusion with the other boundary value problems.
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Theorem 1 (Newton-Kantorovitch’s theorem)

Suppose that there exists some α > 0 satisfying

||F ′û
−1F (û)||V ≤ α. (1)

Moreover, suppose that there exists some β > 0 satisfying

||F ′û
−1(F ′v − F ′w)||L(V,V) ≤ β||v − w||V for all v,w ∈ D, (2)

where D = B(û, 2α + δ) is an open ball depending on α > 0 and small
δ > 0. If αβ ≤ 1/2, there exists a solution u ∈ V of F (u) = 0 satisfying

||u − û||V ≤
1 −

√
1 − 2αβ
β

(=: ρ). (3)

The solution u is unique in B(û, 2α).
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Required constants
α is estimated by

α ≤ ∥F ′−1
û ∥L(V∗,V)∥F (û)∥V∗

β is estimated by

β ≤ ∥F ′−1
û ∥L(V∗,V)L,

where L is a positive number satisfying∥∥∥F′v − F′w
∥∥∥L(V,V∗) ≤ L∥v − w∥V for all v,w ∈ D.

The most important and difficult part is to estimate the operator norm
of ∥F ′−1

û ∥.
Several methods for estimating the inverse norm have been devel-
oped.
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Estimation of ∥F ′−1
û ∥L(V∗,V)

Theorem 2

Let Φ : V → V∗ be the canonical isometric isomorphism. If the point
spectrum of Φ−1F ′û (denoted by σp(Φ−1F ′û )) does not contain zero, then
the inverse of F ′û exists and∥∥∥F ′−1

û

∥∥∥
B(V∗,V) ≤ µ

−1
0 , (4)

where

µ0 = min
{
|µ| : µ ∈ σp

(
Φ−1F ′û

)
∪ {1}

}
. (5)

[7] K. Tanaka, A. Takayasu, X. Liu, and S. Oishi, “Verified norm estimation for the inverse of linear elliptic
operators using eigenvalue evaluation,” Japan Journal of Industrial and Applied Mathematics, vol. 31, no. 3,
pp. 665–679, 2014
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The eigenvalue problem Φ−1F ′û u = µu in V is equivalent to

(∇u,∇v) −
(
F′ûu, v

)
= µ (u, v)V for all v ∈ V.

Since µ = 1 is already known to be in σ
(
Φ−1F ′û

)
, it suffices to look for

eigenvalues µ , 1. By setting λ = (1 − µ)−1, we further transform this
eigenvalue problem into

Find u ∈ V and λ ∈ R s.t. (u, v)V = λ
(
(τ + F′û)u, v

)
for all v ∈ V. (6)

(6) is an eigenvalue problem, the spectrum of which consists of a sequence
{λk}∞k=1 of eigenvalues converging to +∞.

In order to compute K on the basis of Theorem 2, we explicitly en-
close the eigenvalue λ that minimizes the corresponding absolute value of
|µ|

(
= |1 − λ−1|

)
, by considering the following approximate eigenvalue prob-

lem

Find u ∈ VN and λN ∈ R
s.t. (uN , vN)V = λ

N
(
(τ + F′û)uN , vN

)
for all vN ∈ VN , (7)

where VN is a finite-dimensional subspace of V.
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Theorem 3 ([7, 8])

Suppose that there exists a positive number CτN such that∥∥∥ug − PτNug
∥∥∥

V ≤ CτN ∥g∥L2(Ω) (8)

for any g ∈ L2 (Ω) and the corresponding weak solution ug ∈ V to
−∆u = g. Then,

λN
k

λN
k

(
CτN

)2 ∥τ + f ′(û(·))∥L∞(Ω) + 1
≤ λk ≤ λN

k .

[7] K. Tanaka, A. Takayasu, X. Liu, and S. Oishi, “Verified norm estimation for the inverse of linear elliptic
operators using eigenvalue evaluation,” Japan Journal of Industrial and Applied Mathematics, vol. 31, no. 3,
pp. 665–679, 2014

[8] X. Liu, “A framework of verified eigenvalue bounds for self-adjoint differential operators,” Applied Mathematics
and Computation, vol. 267, pp. 341–355, 2015
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L∞-esitimates
Theorem 4 ([9])

For all u ∈ H2 (Ω),

∥u∥L∞(Ω) ≤ c0∥u∥L2(Ω) + c1∥∇u∥L2(Ω) + c2∥uxx∥L2(Ω)

with

c j =
γ j∣∣∣∣Ω∣∣∣∣

max
x0∈Ω

∫
Ω

|x − x0|2 jdx
1/2

, ( j = 0, 1, 2),

where uxx denotes the Hesse matrix and γ0, γ1, and γ2 are constants.

Note: explicit values of γ0, γ1, and γ2 are shown in (see [9]).
[9] M. Plum, “Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value

problems,” Journal of Mathematical Analysis and Applications, vol. 165, no. 1, pp. 36–61, 1992
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L∞-esitimates

By substituting u − û in the formula, we have

∥u − û∥L∞(Ω) ≤ c0∥u − û∥L2(Ω) + c1∥∇(u − û)∥L2(Ω) + c2∥(u − û)xx∥L2(Ω).

For regular Ω, e.g., polygonal Ω,

∥uxx∥L2(Ω) = ∥∆u∥L2(Ω)

for all u ∈ H2(Ω) ∩ V [10].

All that’s left is calculating each term, but it is not easy in general.

[10] P. Grisvard, Elliptic problems in nonsmooth domains, vol. 69. SIAM, 2011
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Summary of Section 1

We presented a verification method the elliptic problem{
−∆u(x) = f (u(x)), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω. (D)

on the basis of Newton-Kantorovich’s theorem.

For the elliptic problem, H1
0-error estimation can be obtained.

L∞-error estimation is also obtained by considering the embedding
H2(Ω) ↪→ L∞(Ω).
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Contents
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Objective

We continue to consider the homogeneous Dirichlet problem:{
−∆u(x) = f (u(x)), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω (D)

and the corresponding weak form

F (u) = 0 (P)

with the same assumption in the previous section.
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Positive solution and its enclosure

Upper bound

Approximate solution

Lower bound

Might not be positive !

It is possible for the exact solution u to be negative in some part, even
if approximation û is positive.
On the contrary, u may be positive even when û is negative in some
part as long as the verified enclosure contains a positive function.
In essence, it is not necessary to confirm û ≥ 0.
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Purpose in Section 2

To prove the positivity of u of (D) only assuming H1
0-error estimation:

∥u − û∥H1
0
≤ ρ.

This will be done without L∞-error estimation.

Kazuaki Tanaka 38 / 80



V.N.C. for PDEs and appl. to sign-change struc. anal. | Verification of positivity | Previous research

Previous research

[11] for odd function f (t)

[12] generalizing this to general f

[13] further applying this to the best constant for the embedding
H1

0(Ω) ↪→ Lp(Ω), namely the case in which f (t) = tp

The above methods required L∞-error estimation

∥u − û∥L∞ ≤ σ.

It often needs H2-regularity of solution u.

[11] K. Tanaka, K. Sekine, M. Mizuguchi, and S. Oishi, “Numerical verification of positiveness for solutions to
semilinear elliptic problems,” JSIAM Letters, vol. 7, pp. 73–76, 2015

[12] K. Tanaka, K. Sekine, and S. Oishi, “Numerical verification method for positivity of solutions to elliptic
equations,” RIMS Kôkyûroku, vol. 2037, pp. 117–125, 2017

[13] K. Tanaka, K. Sekine, M. Mizuguchi, and S. Oishi, “Sharp numerical inclusion of the best constant for
embedding H1

0 (Ω) ↪→ Lp(Ω) on bounded convex domain,” Journal of Computational and Applied
Mathematics, vol. 311, pp. 306–313, 2017
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Important lemma for proving positivity
Lemma 1

Let f satisfy

t f (t) ≤ λt2 +

n∑
i=1

ai|t|pi+1 for all t ∈ R (9)

for some λ < λ1(Ω), nonnegative coefficients a1, a2, · · · , an, and subcriti-
cal exponents p1, p2, · · · , pn ∈ (1, p∗). If a solution of D-problem (P) sat-
isfy the inequality

n∑
i=1

aiC2
pi+1 ∥u∥

pi−1
Lpi+1 < 1 − λ

λ1(Ω)
, (10)

then u is the trivial solution u ≡ 0, where Cpi+1 = Cpi+1(Ω).
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Remark 1

The inequality (9) can be reduced to the combination the following in-
equalities:

f (t) ≤ λt +
n∑

i=1

aitpi for all t ≥ 0,

− f (−t) ≤ λt +
n∑

i=1

aitpi for all t ≥ 0.

Therefore, the polynomial f (t) = λt +
∑n(<p∗)

i=2 ait|t|i−1 with λ < λ1(Ω) and
ai ∈ R obviously satisfies the required inequality (9). Indeed, for the set
of subscripts Λ+ for which ai ≥ 0 (i ∈ Λ+) and ai < 0 (otherwise), we have
f (t) ≤ λt +∑

i∈Λ+ aiti and − f (−t) ≤ λt +∑
i∈Λ+ aiti for all t ≥ 0.
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Proof.

We prove that ∥u∥V = 0. Because u satisfies

(∇u,∇v)L2 = ⟨F(u), v⟩ for all v ∈ V,

by fixing v = u, we have

∥u∥2V ≤
∫
Ω

λ (u(x))2 +

n∑
i=1

ai|u(x)|pi+1

 dx

=λ ∥u∥2L2 +

n∑
i=1

ai ∥u∥pi+1
Lpi+1

≤
 λ

λ1(Ω)
+

n∑
i=1

aiC2
pi+1 ∥u∥

pi−1
Lpi+1

 ∥u∥2V .
Therefore, (10) ensures ∥u∥V = 0.
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Theorem for proving positivity
Theorem 5

Let f satisfy

− f (−t) ≤ λt +
n∑

i=1

aitpi for all t ≥ 0 (11)

for some λ < λ1(Ω−), nonnegative coefficients a1, a2, · · · , an, and subcriti-
cal exponents p1, p2, · · · , pn ∈ (1, p∗). If

n∑
i=1

aiC2
pi+1

(
∥û−∥Lpi+1 +Cpi+1ρ

)pi−1
< 1 − λ

λ1(Ω−)
, (12)

then the verified solution u ∈ V of D-problem (P) in B(û, ρ) is nonnegative.

Notation: Ω− = {x ∈ Ω : u(x) ≤ 0}, û− := max {−û, 0}
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About λ < λ1(Ω−)

Note thatΩ− = {x ∈ Ω : u(x) ≤ 0} is information about an exact solution
u

It follows from Ω ⊃ Ω− that

λ1(Ω) ≤ λ1(Ω−).

Therefore, when

λ < λ1(Ω)

we also have λ < λ1(Ω−).

⇒ Hence, in this case, Ω− is replaceable with Ω.

The ease of positivity verification depends on the coefficient of linear
term λ.
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Example 1: f (t) = λt + t|t|p−1

When λ ≥ λ1(Ω), (D) has no positive solution
Therefore, it is sufficient to consider the case in which λ < λ1(Ω)

Corollary 1

Let f (t) = λt + t|t|p−1, with λ < λ1(Ω) and p ∈ (1, p∗). If

C2
p+1

(
∥û−∥Lp+1 +Cp+1ρ

)p−1
< 1 − λ

λ1(Ω)
, (13)

then the verified solution u ∈ V of (P) in B(û, ρ) is positive.

For example when λ = 0, it is reduced to ∥û−∥Lp+1 ≤ C
2

1−p

p+1 −Cp+1ρ.

If p = 3 and Ω = (0, 1)2, it is reduced to ∥û−∥Lp+1 ≤ 3.15 − 0.319ρ.
Furthermore, if û ≥ 0, it is reduced to ρ ≤ 9.86.
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Example 2: f (t) = λ(t − t3)

When λ < λ1(Ω), (D) has no positive solution.

Therefore, λ1(Ω−) should be estimated to satisfy λ < λ1(Ω−).

Corollary 2

Let f (t) = λ(t − t3), with λ ≥ λ1(Ω). If

λ < λ1(Ω−),

then the verified solution u ∈ V of (P) in B(û, ρ) is positive.
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Evaluation for λ1(Ω−)

It goes easy if we have an L∞-error estimate:

∥u − û∥L∞ ≤ σ.

For example, using the method in [14], we can evaluate a lower bound
for λ1(Ω−).

We hope to evaluate λ1(Ω−) only assuming an H1
0-error estimate.

The biggest problem is that the shape of Ω− is unknown.

All we know is that Ω− ⊂ Ω and |Ω−| is very “small”.

[14] X. Liu and S. Oishi, “Verified eigenvalue evaluation for the laplacian over polygonal domains of arbitrary
shape,” SIAM Journal on Numerical Analysis, vol. 51, no. 3, pp. 1634–1654, 2013
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Evaluation for lower bounds

Lemma 2 ([15])

Let Ω ⊂ RN (N = 1, 2, 3, · · · ) is a bounded domain, and λk k-th eiganvalue
of −∆ on Ω. Then, we have

λk ≥
4π2N
N + 2

(
k

BN |Ω|

) 2
N

, (14)

where |Ω| and BN stands for the volume of Ω and the unit N-ball, respec-
tively.

[15] P. Li and S.-T. Yau, “On the schrödinger equation and the eigenvalue problem,” Communications in
Mathematical Physics, vol. 88, no. 3, pp. 309–318, 1983
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Evaluation for lower bounds

Adapting Lemma 2 to the case in which N = 2, 3, we have the following
estimations for the first eigenvalue.

Corollary 3

Under the same assumption, we have

λ1(Ω) ≥ 2π|Ω|−1, N = 2,

λ1(Ω) ≥ 3 × 6
2
3

5
π

4
3 |Ω|− 2

3 , N = 3.

[15] P. Li and S.-T. Yau, “On the schrödinger equation and the eigenvalue problem,” Communications in
Mathematical Physics, vol. 88, no. 3, pp. 309–318, 1983
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Upper bound for |Ω−|
Prerequisite: ∥u − û∥V ≤ ρ

Theorem 6

Assume that approximate solution û is continuous or piecewise continu-
ous over Ω. For a real number m, define

Ω̂m := {x ∈ Ω : û(x) ≤ m}.

If

∥û+∥Lp+1(Ω̂m) ≥ Cp+1ρ

for an arbitrarily fixed p ∈ [1, p∗), then we have

|Ω−| ≤ |Ω̂m|.
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Steps for evaluation of λ1(Ω−)

1 Select p ∈ [1, p∗). p = 1 is useful for us.

2 For a small m > 0, we set Ω̂m := {x ∈ Ω : û(x) ≤ m} and confirm that

∥û+∥Lp+1(Ω̂m) ≥ Cp+1ρ.

3 Evaluate λ1(Ω−) via |Ω̂m|. For example when n = 2, 3, it follows from
Corollary 3 that

λ1(Ω−) ≥ 2π|Ω̂m|−1, (N = 2)

λ1(Ω−) ≥ 3 × 6
2
3

5
π

4
3 |Ω̂m|−

2
3 , (N = 3)
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Application 1: f (t) = t|t|p−1

p = 3, max
x∈Ω

û(x) ≈ 6.6232 p = 5, max
x∈Ω

û(x) ≈ 3.1721

Figure 1: Solutions for p = 3, 5.
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Application 1: f (t) = t|t|p−1

Table 1: Verification results for p = 3, 5.

p 3 5

N 40 40

∥F ′−1
û ∥L(V∗ ,V) 1.70325176 2.36317681

∥F (û)∥V∗ 2.64173615 × 10−8 1.92671579 × 10−3

L 0.67839778 6.47198581

α 4.49954173 × 10−8 4.55317005 × 10−3

β 1.15548221 15.2944468

ρ 4.63295216 × 10−8 5.47604979 × 10−3

Cp+1 0.31830989 0.39585400

∥û−∥Lp+1 4.19109326 × 10−2 4.81952900 × 10−2

C2
p+1

(
∥û−∥Lp+1 +Cp+1ρ

)p−1
1.77973446 × 10−4 1.00813027 × 10−6
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The limits of evaluation

1 When ρ is fixed, how rough can we evaluate ∥û−∥Lp+1?
When p = 3 ⇒ ∥û−∥Lp+1 ≤ 3.15 then OK.
When p = 5 ⇒ ∥û−∥Lp+1 ≤ 1.59 then OK.

2 When ∥û−∥Lp+1 = 0, how large can we evaluate ρ?
When p = 3 ⇒ ρ ≤ 9.86 then OK.
When p = 5 ⇒ ρ ≤ 4.01 then OK.
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Application 2: f (t) = ε−2(t − t3)

ε = 0.1 ε = 0.05 ε = 0.025

Figure 2: Solutions for ε = 0.1, 0.05, 0.025.
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Application 2: f (t) = ε−2(t − t3)

Table 2: Verification results for ε = 0.1, 0.05, 0.025.

ε 0.1 0.05 0.025

N 40 40 60

∥F ′−1
û ∥L(V∗ ,V) 2.85871420 4.57367687 26.8239159

∥F (û)∥V∗ 5.57390453 × 10−10 2.15869521 × 10−6 1.99428443 × 10−6

L 3.00408573 5.02704780 7.57229904

α 1.59342000 × 10−9 9.87317430 × 10−6 5.34945174 × 10−5

β 8.58782250 22.9920923 2.03118712 × 10+2

ρ 1.59342002 × 10−9 9.87429519 × 10−6 5.37883476 × 10−5

m 2−4 2−4 2−4

λ1(Ω−) ≥ 2.09235179 × 10+2 1.83828050 × 10+3 2.57359270 × 10+4

ε−2 1.0 × 10+2 4.0 × 10+2 1.6 × 10+3
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Summary of Section 2

We proposed a method for proving the positivity of solutions of the
elliptic problem {

−∆u(x) = f (u(x)), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω. (D)

We assume an H1
0-error estimation between u and its approximation û

∥u − û∥V ≤ ρ.

Our method can be applied provided that û is sufficiently near to a
nonnegative function and ρ sufficiently small.

The advantage of this method is no L∞-error estimation is required.
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Required verification results

Let û ∈ H1
0(Ω)∩ L∞(Ω) be a numerical computed approximate solution

(usually which may have higher regularity in real computations).

Suppose that one can succeed to prove the existence of u in the
forms:

∥∇(u − û)∥L2 ≤ ρ
∥u − û∥L∞ ≤ σ,

using verified numerical computation methods for PDEs.

σ is important for determining the location of nodal lines.
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Notation
u := û + σ and u := û − σ
Ω+ := {x ∈ Ω : u(x) > 0} or its superset,

Ω− := {x ∈ Ω : u(x) < 0} or its superset,

Ω0 := Ω\(Ω+ ∪Ω−)
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Main theorem for verifying #N.D.(u)
Theorem 7

Let f satisfy (9) for some λ < λ1(Ω0). Denote Cpi+1 = Cpi+1(Ω). If

n∑
i=1

aiCpi+1(Ω0)2
(
∥û∥Lpi+1(Ω0) +Cpi+1ρ

)pi−1
< 1 − λ

λ1(Ω0)
, (15)

then the verified solution u ∈ V of the D-problem (P) satisfies

#C.C.(Ω+ ∪Ω0) ≤ #P.N.D.(u) ≤ #C.C.(Ω+),

#C.C.(Ω− ∪Ω0) ≤ #N.N.D.(u) ≤ #C.C.(Ω−),

where #C.C.(Ω) is the number of connected components of Ω. Note that
if Ω0 is disconnected, (15) is understood as the set of inequalities for all
connected components Ω j

0 ( j = 1, 2, · · · ) of Ω0. If Ω0 is empty, λ1(Ω0) is
understood as ∞ so that λ/λ1(Ω0) = 0.
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Remark 2

Sicne Cpi+1(Ω0) ≤ Cpi+1(Ω), the following simplified inequality is a suf-
ficient for (15) with replacing Cpi+1(Ω0) with Cpi+1(Ω).

n∑
i=1

aiC2
pi+1

(
∥û∥Lpi+1(Ω0) +Cpi+1ρ

)pi−1
< 1 − λ

λ1(Ω0)
.

As long as we have λ < λ1(Ω), this further simplified to

n∑
i=1

aiC2
pi+1

(
∥û∥Lpi+1(Ω0) +Cpi+1ρ

)pi−1
< 1 − λ

λ1(Ω)

because λ1(Ω0) ≥ λ1(Ω); this is confirmed by considering extension out-
side Ω0.
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Allen-Cahn equation

As an important problem, we consider the stationary problem of Allen-Cahn
equation: {

−∆u(x) = ε−2(u(x) − u(x)3), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω, (AC)

which is equivalent to (D) with the nonlinearity f (t) = ε−2(t − t3).
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Application to Allen-Cahn equation

Corollary 4

Let f (t) = ε−2(t − t3), with ε−2 ≥ λ1(Ω). If

ε−2 < λ1(Ω0), (16)

then the verified solution u ∈ V of D-problem (P) satisfies

#C.C.(Ω+ ∪Ω0) ≤ #P.N.D.(u) ≤ #C.C.(Ω+),

#C.C.(Ω− ∪Ω0) ≤ #N.N.D.(u) ≤ #C.C.(Ω−).
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P.N.D
.N.D

N.D

unknown
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P.N.D
.N.D

N.D

unknown
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Numerical examples
We consider {

−∆u(x) = ε−2(u(x) − u(x)3), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω, (AC)

with a unit square Ω = (0, 1)2. To obtain “good” approximate solutions, we
constructed approximate solutions û using a Legendre polynomial basis.

To get verified inclusions,

∥∇(u − û)∥L2 ≤ ρ
and

∥u − û∥L∞ ≤ σ,

we used the method described in [16].
[16] M. Plum, “Existence and multiplicity proofs for semilinear elliptic boundary value problems by computer

assistance,” Jahresbericht der Deutschen Mathematiker Vereinigung, vol. 110, no. 1, pp. 19–54, 2008
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Sign-changing solutions

ε = 0.1

(A) (B) (C)

ε = 0.08

Figure 3: Verified solutions of (AC).
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Sign-changing solutions

ε = 0.06

ε = 0.04

Figure 4: Verified solutions of (AC).
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Table 3: Verification results of sign-changing solutions to (AC).

ID ε N ρ σ #P.N.D. #N.N.D. #N.D.

(A)

0.1 100 3.96e-14 1.45e-13

1 1 – 2 2 – 3
0.08 100 5.03e-13 1.03e-11
0.06 100 6.81e-08 3.11e-06
0.04 150 3.90e-06 4.98e-04

(B)

0.1 100 8.74e-15 3.12e-14

1 1 2
0.08 100 4.08e-15 5.46e-14
0.06 100 3.75e-13 1.39e-11
0.04 120 1.14e-07 1.44e-05

(C)

0.1 80 8.74e-15 3.12e-14

1 – 2 1 – 2 2 – 4
0.08 80 1.17e-12 1.86e-11
0.06 80 8.55e-09 3.29e-07
0.04 120 5.68e-07 7.13e-05
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(A)

－

－
＋

(B)

＋
－

(C)

－ －
＋

＋

Figure 5: Verified nodal lines of the solutions (A), (B), and (C) for ε = 0.08. We
confirmed (û + σ)(û − σ) ≤ 0 on red squares. For ease of viewing, these were
drawn with rough accuracy by dividing the domain Ω into 212 smaller congruent
squares and implementing interval arithmetic on each of them. For each solution,
our method proved that there exists no nodal domain of u in Ω0, the union of the
red squares. Meanwhile, the sign of u is strictly determined in the blanks.
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－
＋ － － ＋

Figure 6: Accurate inclusion of nodal line of solution (B) with ε = 0.08 (left), and
its magnifications (center and right). These were drawn by dividing the domain Ω
into 216 smaller congruent squares and implementing interval arithmetic on each
of them. In the blanks, the sign of u is strictly determined.
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Refinement the estimate of #N.D.(u)
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Summary for Section 3

We proposed a rigorous numerical method for analyzing the sing-
change structure of solutions to the elliptic problem{

−∆u(x) = f (u(x)), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω. (P)

The required assumption is the error estimations between u and its
approximation û in the form:

∥∇(u − û)∥L2 ≤ ρ,
∥u − û∥L∞ ≤ σ.

We showed the application to Allen-Cahn equation.
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Extension to other boundary conditions

We extend our theorems to the mixed boundary value problem
−∆u(x) = f (u(x)), x ∈ Ω,
u(x) = 0, x ∈ ΓD,
∂u
∂n (x) = 0, x ∈ ΓN ,

(M)

where ΓD,ΓN ⊂ ∂Ω satisfy ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω.
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Extended notation

We extend the solution space to V := {u ∈ H1(Ω) : u = 0 on ∂ΓD}.
The inner product endowed with V should be changed depending on
boundary conditions.

When ΓD = ∅ (i.e., Neumann type), we endow V with the inner product
(u, v)V = (∇u,∇v)L2 + (u, v)L2 .

Otherwise (i.e., Dirichlet type or mixed type), we endow it with (u, v)V =

(∇u,∇v)L2 .

The norm endowed with V is always ∥u∥V =
√

(u, u)V regardless bound-
ary conditions.

To avoid confusion, we call (P) corresponding to (M) (with assuming
ΓN = ∂Ω) as N-problem, and call (P) corresponding to (M) (with as-
suming ΓD , ∅ and ΓN , ∅) as M-problem.
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Extended notation

The norm bound Cp+1 (= Cp+1(Ω,ΓD)) for the embedding V(Ω,ΓD) ↪→
Lp+1(Ω) is defined by

∥u∥Lp+1(Ω) ≤ Cp+1 ∥u∥V(Ω,ΓD) for all u ∈ V, (17)

where p ∈ [1,∞) when N = 1, 2 and p ∈ [1, p∗] when N ≥ 3.

In the following definition (18), we assume ΓD , ∅. Expecting this
special case is enough for completing the later discussion. The first
eigenvalue of −∆ on V(Ω,ΓD) is denoted by λ1(Ω,ΓD), the definition of
which is

λ1(Ω,ΓD) := inf
v∈V\{0}

∥v∥2V(Ω,ΓD)

∥v∥2
L2(Ω)

. (18)
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Extended theorem
Theorem 8

Let f satisfy (9) for some λ < min
j
{λ1(Ω j

0, ∂Ω
j
0\ΓN)}. Denote Cpi+1 =

Cpi+1(Ω, ∂Ω\ΓN), C j
pi+1 = Cpi+1(Ω j

0, ∂Ω
j
0\ΓN), and λ j

1 = λ1(Ω j
0, ∂Ω

j
0\ΓN). If

we have

n∑
i=1

ai(C
j
pi+1)2

(
∥û∥Lpi+1(Ω j

0) +Cpi+1ρ
)pi−1

< 1 − λ
λ

j
1

, (19)

for each j, then the verified solution u ∈ V of (M) satisfies,

#C.C.(Ω+ ∪Ω0) ≤ #P.N.D.(u) ≤ #C.C.(Ω+),

#C.C.(Ω− ∪Ω0) ≤ #N.N.D.(u) ≤ #C.C.(Ω−),

where the first eigenvalue is understood as ∞ when Ω j
0 is empty.
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