Introduction to Verified Numerical Computation（Verified Computing）

TANAKA，Kazuaki

田中 一成tanaka＠ims．sci．waseda．ac．jp
Institute for Mathematical Science，Waseda University
LAB：Building No．60，Room 307B

System of linear equations

- Basic and important problems in linear algebra and numerical analysis
- There are enormous number of problems of finding multi unknown variables.
- The simplest and most typical model is system of linear equations.
- Solving a system of linear equations is required to solve a system of nonlinear equations in most cases.

Example)

$$
\left\{\begin{array}{c}
2 x+4 y+6 z=6 \\
3 x+8 y+7 z=15 \\
5 x+7 y+21 z=24
\end{array} \quad \text { can be written as } \quad A x=b\right.
$$

where

$$
A=\left[\begin{array}{ccc}
2 & 4 & 6 \\
3 & 8 & 7 \\
5 & 7 & 21
\end{array}\right], \quad b=\left[\begin{array}{c}
6 \\
15 \\
24
\end{array}\right]
$$

Numerical methods for solving linear equations

Numerical method for solving a system of linear equations are classified into "Direct methods" and "Iterative methods".

Direct methods

- Gaussian elimination method or LU-factorization method
- Cholesky method (for a symmetric matrix)
- Advantage
- Stable (compared with iterative methods)
- Wide application range
- Applicable for both dense matrices and sparse matrices
- Disadvantage
- A lot of memory
- Long computation time with $\mathrm{O}\left(N^{3}\right)$ order
\Rightarrow Mainly used for dense problems

Numerical methods for solving linear equations

Iterative methods
Iterative methods are further classified into "Stationary" and "Nonstationary".

- Stationary iterative methods
- Jacobi method
- Gauss-Seidel method
- Nonstationary iterative methods
- Several types of Krylov subspace methods
- For example, CG method

```
Note:
CG method: Conjugate Gadient method
```

- Advantage
- Small memory usage
- Short computation time
- Disadvantage
- Limited application range (mainly used for sparse matrices)

Exercise using VCP Library

- Run the test codes for matrices.
- Try the Gaussian elimination method with interval arithmetics using Iss packaged in VCP Library.
- Observe the increase of the width of intervals.

```
test_matrix.cc
test_interval_matrix.cc
approx_gauss.cc
interval_gauss.cc
```


Fundamental theorem for $A x=b$

- I: $n \times n$ identity matrix
- A: $n \times n$ real matrix
- $b: n \times 1$ real vector
- x^{*} : the solution of $A x=b$
- \tilde{x} : approximate solution of x^{*}
- R : approximation of A^{-1}

Theorem 5.3

Suppose that

$$
\|R A-I\|<1
$$

Then, we have

$$
\left\|x^{*}-\tilde{x}\right\| \leq \frac{\|R(b-A \tilde{x})\|}{1-\|R A-I\|} .
$$

verify_lineareq.cc

Yamamoto's theorem for $A x=b$

- For matrix (vector) $M=\left[m_{i, j}\right]$, we denote $|M|=\left[\left|m_{i, j}\right|\right]$.
- $e=[1,1, \cdots, 1]^{T}$.

Theorem 5.6

Suppose that

$$
\|R A-I\|<1
$$

Then, we have

$$
\left|x^{*}-\tilde{x}\right| \leq|R(b-A \tilde{x})|+\frac{\|R(b-A \tilde{x})\|_{\infty}}{1-\|R A-I\|_{\infty}}|R A-I| e
$$

T. Yamamoto, Error bounds for approximate solutions of systems of equations, Japan Journal of Applied Mathematics, Vol 1, 157-171 (1984).
verify_lineareq.cc
verify_lineareq_vcpdefault.cc

