Introduction to Verified Numerical Computation（Verified Computing）

TANAKA，Kazuaki

田中 一成tanaka＠ims．sci．waseda．ac．jp
Institute for Mathematical Science，Waseda University
LAB：Building No．60，Room 307B

Floating-Point Numbers

Generally, a nonzero real number can be represented in the following form:

$$
\pm\left(\frac{d_{0}}{\beta^{0}}+\frac{d_{1}}{\beta^{1}}+\frac{d_{2}}{\beta^{2}}+\cdots\right) \cdot \beta^{e} \kappa
$$

where $\beta \geq 2,0 \leq d_{i} \leq \beta-1$, and e is an integer.
Example)

$$
\begin{aligned}
& 7.375=+\left(\frac{7}{10^{0}}+\frac{3}{10^{1}}+\frac{7}{10^{2}}+\frac{5}{10^{3}}\right) \cdot 10^{0} \quad\left(\frac{\beta=10)}{\text { Base }}\right. \\
& 7.375=+\left(\frac{1}{2^{0}}+\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{0}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}\right) \cdot 2^{2} \quad(\beta=2)
\end{aligned}
$$

Example)

$$
\begin{aligned}
& 0.2=+\left(\frac{2}{10^{0}}\right) \cdot 10^{-1} \quad(\beta=10) \\
& 0.2=+(\underbrace{\left(\frac{1}{2^{0}}+\frac{1}{2^{1}}+\frac{0}{2^{2}}+\frac{0}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{0}{2^{6}}+\frac{0}{2^{7}}+\cdots\right) \cdot 2^{-3}} \begin{array}{rl}
\text { infinite } & (\beta=2) \\
\pi=+\left(\frac{3}{10^{0}}+\frac{1}{10^{1}}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\frac{9}{10^{5}}+\cdots\right) \cdot 10^{0}(\beta=10) \\
\pi=+\left(\frac{1}{2^{0}}+\frac{1}{2^{1}}+\frac{0}{2^{2}}+\frac{0}{2^{3}}+\frac{1}{2^{4}}+\frac{0}{2^{5}}+\frac{0}{2^{6}}+\frac{1}{2^{7}}+\cdots\right) \cdot 2^{1} \\
\text { infinite } \\
(\beta=2)
\end{array}
\end{aligned}
$$

Floating-Point Number in computers

Since computers cannot possess infinite digits, in them, numbers are represented in the following (finite) form:

$$
\pm \underbrace{\left(\frac{d_{0}}{\beta^{0}}+\frac{d_{1}}{\beta^{1}}+\frac{d_{2}}{\beta^{2}}+\cdots+\frac{d_{p-1}}{\beta^{p-1}}\right)}_{\text {"significant" }} \cdot \beta^{e}
$$

β : "base"
e : "exponent", $\mathrm{E}_{\min } \leq e \leq \mathrm{E}_{\max }$
p: "precision"
significant digits

IEEE 754 binary64 (double)

Most computers employ, IEEE754 standard binary64 (so called double), i.e., $\beta=2, \underline{p=53}, \mathrm{E}_{\min }=-1022, \mathrm{E}_{\max }=1023$.

$$
\pm \underbrace{\left(\frac{d_{0}}{2^{0}}+\frac{d_{1}}{2^{1}}+\frac{d_{2}}{2^{2}}+\cdots+\frac{d_{52}}{2^{52}}\right) \cdot 2^{e} \quad(-1022 \leq e \leq 1023)}_{53}
$$

It is called "normalized" when $d_{0}=1$.
Normalized numbers 52 significant digits.

It is called "denormalized" when $d_{0}=0$.
The significant digits of denormalized numbers are less than 52.

Maximal and minimal numbers

$$
\begin{aligned}
M & =\underbrace{\left(\frac{1}{2^{0}}+\frac{1}{2^{1}}+\cdots \cdots \cdots+\frac{1}{2^{52}}\right) \cdot 2^{1023}}_{\text {Inf }(\text { overflow })} \frac{a\left(1-r^{n}\right)}{1-r} \\
& m_{n}=\left(\frac{1}{2^{0}}+\frac{0}{2^{1}}+\cdots+\frac{0}{2^{52}}\right) \cdot 2^{-1022}=2^{-1022} \\
m_{d} & =\left(\frac{0}{2^{0}}+\frac{0}{2^{1}}+\cdots+\frac{1}{2^{(53)}}\right) \cdot 2^{-1022}=2^{-10174}
\end{aligned}
$$

Rounding

\mathbb{F} : the set of floating-point numbers (here binary 64). For simplicity, we consider a normalized number x satisfying $m \leq x \leq M$.

- Raund Neavest

When $x \notin \mathbb{F}$, computers round off x to $\operatorname{RN}(x) \in \mathbb{F}$.

$$
|x-\mathrm{RN}(x)|=\min _{y \in \mathbb{F}}|x-y|
$$

Observe rounding in computers

observation_rounding_to_nearest.cc test_rounding.cc

